
General Information
This page covers the following topics related to the usage of Natural statements:

User-Defined Variables
Constants
Report Specification
Text Notation
User Comments
End of a Statement
Logical Condition Criteria
Rules for Arithmetic Assignment
Renumbering of Source-Code Line Number References

User-Defined Variables
User-defined variables can be used to store intermediate results in a program or routine.

Naming Conventions
Definition of Variables
Statement Reference Notation - r
Definition of Format and Length
Special Formats
Index Notation
Referencing a Database Array
Referencing the Internal Count for a Database Array
Qualifying Data Structures

Naming Conventions

The name of a user-defined variable may be 1 to 32 characters long.

Note:
You may use variable names of over 32 characters (for example, in complex applications where longer meaningful
variable names enhance the readability of programs); however, only the first 32 characters are significant and must
therefore be unique, the remaining characters will be ignored by Natural.

The name of a user-defined variable must not be a Natural reserved word.

Within one Natural program, you should not use the same name for a user-defined variable and a database field,
because this might lead to referencing errors (see Qualifying Data Structures).

1Copyright Software AG 2002

General InformationGeneral Information

The name of a user-defined variable may consist of the following characters:

Character Explanation

A - Z alphabetical characters (upper and lower case)

0 - 9 numeric characters

- hyphen

@ at sign

_ underline

/ slash

$ dollar sign

§ paragraph sign

& ampersand

hash/number sign

+ plus sign (only allowed as first character)

The first character of the name must be one of the following:

an upper-case alphabetical character

+
&

If the first character is a "#", "+" or "&", the name must consist of at least one additional character.

"+" as the first character of a name is only allowed for application-independent variables (AIVs) and variables in a
global data area. Names of AIVs must begin with a "+".

"&" as the first character of a name is used in conjunction with dynamic source program modification (see the RUN
statement in the Natural Statements documentation), and as a dynamically replaceable character when defining
processing rules (see the map editor description in your Natural User’s Guide).

Definition of Variables

You define the characteristics of a variable with the following notation:

(r,format-length/index)

This notation follows the variable name, optionally separated by one or more blanks. No blanks are allowed between
the individual elements of the notation. The individual elements may be specified selectively as required, but when
used together, they must be separated by the characters as indicated above.

Attention:
If operating in structured mode or if a program contains a DEFINE DATA LOCAL clause, variables cannot be
defined dynamically in a statement. This does not apply to application-independent variables (AIVs).

Copyright Software AG 20022

General InformationDefinition of Variables

Statement Reference Notation - r

A statement label or the source-code line number can be used to refer to a previous Natural statement. This can be
used to override Natural’s default referencing (as described for each statement, where applicable), or for
documentation purposes.

Default Referencing of Database Fields

Generally, the following applies if you specify no statement reference notation: By default, the innermost active
database loop (FIND, READ or HISTOGRAM) in which the database field in question has been read is referenced.
If the field is not read in any active database loop, the last previous GET statement (in reporting mode also FIND
FIRST or FIND UNIQUE statement) which has read the field is referenced.

Referencing with Statement Labels

Any Natural statement which causes a processing loop to be initiated and/or causes data elements to be accessed in
the database may be marked with a symbolic label for subsequent referencing.

A label may be specified either in the form label. before the referencing object or in parentheses (label.) after the
referencing object (but not both simultaneously).

The naming conventions for labels are identical to those for variables. The period after the label name serves to
identify the entry as a label.

Example:

... RD. READ PERSON-VIEW BY NAME STARTING FROM ’JONES’ FD. FIND AUTO-VIEW WITH PERSONNEL-ID = PERSONNEL-ID (FD.) DISPLAY NAME (RD.) FIRST-NAME (RD.) MAKE (FD.)
 END-FIND END-READ ...

Referencing with Source-Code Line Numbers

A statement may also be referenced by using the number of the source-code line in which the statement is located.

All four digits of the line number must be specified (leading zeros must not be omitted).

Example:

 ... 0110 FIND EMPLOYEES-VIEW WITH NAME = ’SMITH’ 0120 FIND VEHICLES-VIEW WITH MODEL = ’FORD’ 0130 DISPLAY NAME (0110) MODEL (0120) 0140 END-FIND 0150 END-FIND ...

For further information on the referencing of statements, see the Natural Programming Guide.

3Copyright Software AG 2002

Statement Reference Notation - rGeneral Information

Definition of Format and Length

Fixed-length variables can be defined with the following formats and corresponding lengths:

Note:
For the definition of Format and Length in dynamic variables, see Definition of Dynamic Variables.

Format Definable Length
(Number of Digits)

Internal Length
(in Bytes)

A Alphanumeric
- on mainframe computers:
- on all other platforms:

1 - 253
1 - 1073741824

1 - 253
1 - 1073741824

B Binary
- on mainframe computers:
- on all other platforms:

1 - 126
1 - 1000000000

1 - 126
1 - 1000000000

C Attribute Control - 2

D Date - 4

F Floating Point 4 or 8 4 or 8

I Integer 1, 2 or 4 1, 2 or 4

L Logical - 1

N Numeric (unpacked) 1 - 29 1 - 29

P Packed numeric 1 - 29 1 - 15

T Time - 7

Length can only be specified if format is specified. With some formats, the length need not be explicitly specified (as
shown in the table above).

For fields defined with format N or P, you can use decimal position notation in the form "nn.m". "nn" represents the
number of positions before the decimal point, and "m" represents the number of positions after the decimal point.
The sum of the values of "nn" and "m" must not exceed 29 and the value of "m" must not exceed 7.

Note:
In reporting mode, if format and length are not specified for a user-defined variable, the default format/length N7
will be used, unless this default assignment has been disabled by the the session parameter FS.

For a database field, the format/length as defined for the field in the DDM apply. (In reporting mode, it is also
possible to define in a program a different format/length for a database field.)

In structured mode, format and length may only be specified in a data area definition or with a DEFINE DATA
statement.

Example of Format/Length Definition - Structured Mode:

 DEFINE DATA LOCAL 1 EMPLOY-VIEW VIEW OF EMPLOYEES 2 NAME 2 FIRST-NAME 1 #NEW-SALARY (N6.2) END-DEFINE ... FIND EMPLOY-VIEW COMPUTE #NEW-SALARY =

In reporting mode, format/length may be defined within the body of the program, if no DEFINE DATA statement is
used.

Example of Format/Length Definition - Reporting Mode:

Copyright Software AG 20024

General InformationDefinition of Format and Length

...
 FIND EMPLOYEES... ... COMPUTE #NEW-SALARY (N6.2) =

Special Formats

In addition to the standard alphanumeric (A) and numeric (B, F, I, N, P) formats, Natural supports the special
formats C, D, T and L, which are described below.

Format C - Attribute Control

A variable defined with format C may be used to assign attributes dynamically to a field used in a DISPLAY,
INPUT or WRITE statement.

For a variable of format C, no length can be specified. The variable is always assigned a length of 2 bytes by Natural.

Example:

 DEFINE DATA LOCAL 1 #ATTR(C) 1 #A(N5) END-DEFINE ... MOVE (AD=I CD=RE) TO #ATTR INPUT #A (CV=#ATTR) ...

For further information, see the session parameter CV.

Formats D - Date, and T - Time

Variables defined with formats D and T can be used for date and time arithmetic and display. Format D can contain
date information only. Format T can contain date and time information; in other words, date information is a subset
of time information. Time is counted in tenths of seconds.

For variables of formats D and T, no length can be specified. A variable with format D is always assigned a length of
4 bytes (P6) and a variable with format T is always assigned a length of 7 bytes (P12) by Natural.

Example:

 DEFINE DATA LOCAL 1 #DAT1 (D)
 END-DEFINE * MOVE *DATX TO #DAT1 ADD 7 TO #DAT1 WRITE ’=’ #DAT1 END

For further information, see the session parameter EM and the system variables *DATX and *TIMX .

The value in a date field must be in the range from 1st January 1582 to 31st December 2699.

Format L - Logical

A variable defined with format L may be used as a logical condition criterion. It can take the value "TRUE" or
"FALSE".

For a variable of format L, no length can be specified. A variable of format L is always assigned a length of 1 byte
by Natural.

Example:

 DEFINE DATA LOCAL 1 #SWITCH(L) END-DEFINE MOVE TRUE TO #SWITCH ... IF #SWITCH ... MOVE FALSE TO #SWITCH ELSE ... M OVE TRUE TO #SWITCH END-IF

For further information on logical value presentation, see the session parameter EM.

5Copyright Software AG 2002

Special FormatsGeneral Information

Format "Handle"

A variable defined as "HANDLE OF dialog-element-type" can be used as a GUI handle.

A variable defined as "HANDLE OF OBJECT" can be used as an object handle.

For further information on GUI handles, see the Natural User’s Guide for Windows. For further information on
object handles, see the NaturalX documentation.

Index Notation

An index notation is used for fields that represent an array.

An integer numeric constant or user-defined variable may be used in index notations. A system variable, system
function or qualified variable cannot be used in index notations.

Array Definition - Examples:

1. #ARRAY (3)
Defines a one-dimensional array with three occurrences.

2. FIELD (label.,A20/5) or label.FIELD(A20/5)
Defines an array from a database field referencing the statement marked by "label." with format alphanumeric,
length 20 and 5 occurrences.

3. #ARRAY (N7.2/1:5,10:12,1:4)
Defines an array with format/length N7.2 and three array dimensions with 5 occurrences in the first, 3
occurrences in the second and 4 occurrences in the third dimension.

4. FIELD (label./i:i + 5) or label.FIELD(i:i + 5)
Defines an array from a database field referencing the statement marked by "label.". FIELD represents a
multiple-value field or a field from a periodic group where "i" specifies the offset index within the database
occurrence. The size of the array within the program is defined as 6 occurrences (i:i + 5). The database offset
index is specified as a variable to allow for the positioning of the program array within the occurrences of the
multiple-value field or periodic group. For any repositioning of "i" a new access must be made to the database
via a GET or GET SAME statement.

Natural allows for the definition of arrays where the index does not have to begin with "1". At runtime, Natural
checks that index values specified in the reference do not exceed the maximum size of dimensions as specified in the
definition.

Note:
For compatibility with Natural Version 1, an array range may be specified using a hyphen (-) instead of a colon (:). A
mix of both notations, however, is not permitted. The hyphen notation is only allowed in reporting mode (but not in a
DEFINE DATA statement).

On mainframe computers, index values may be in the range from -32767 to +32767. The maximum number of
occurrences per array is 32767. The maximum size of an entire array is 32767 bytes (= 32 KB - 1). The maximum
size of a data area per programming object is 16,777,215 bytes (16 MB - 1).

On all other platforms, the maximum index value is 1,073,741,824. The maximum size of a data area per
programming object is 1,073,741,824 bytes (1 GB). Use the DSLM profile parameter to reduce these limits for
compatibility reasons to the limits applicable for mainframe computers.

Simple arithmetic expressions using the "+" and "-" operators may be used in index references. When arithmetic
expressions are used as indices, the operators "+" or "-" must be preceded and followed by a blank.

Copyright Software AG 20026

General InformationIndex Notation

Arrays in group structures are resolved by Natural field by field, not group occurrence by group occurrence.

Example of Group Array Resolution:

DEFINE DATA LOCAL 1 #GROUP (1:2) 2 #FIELDA (A5/1:2) 2 #FIELDB (A5) END-DEFINE ...

If the group defined above were output in a WRITE statement:

WRITE #GROUP (*)

the occurrences would be output in the following order:

#FIELDA(1,1) #FIELDA(1,2) #FIELDA(2,1) #FIELDA(2,2) #FIELDB(1) #FIELDB(2)

and not :

#FIELDA(1,1) #FIELDA(1,2) #FIELDB(1) #FIELDA(2,1) #FIELDA(2,2) #FIELDB(2)

Array Referencing - Examples:

1. #ARRAY (1)
References the first occurrence of a one-dimensional array.

2. #ARRAY (7:12)
References the seventh to twelfth occurrence of a one-dimensional array.

3. #ARRAY (i + 5)
References the i+fifth occurrence of a one-dimensional array.

4. #ARRAY (5,3:7,1:4)
Reference is made within a three dimensional array to occurrence 5 in the first dimension, occurrences 3 to 7
(5 occurrences) in the second dimension and 1 to 4 (4 occurrences) in the third dimension.

5. An asterisk may be used to reference all occurrences within a dimension:
DEFINE DATA LOCAL
1 #ARRAY1 (N5/1:4,1:4)
1 #ARRAY2 (N5/1:4,1:4)
END-DEFINE
...
ADD #ARRAY1 (2,*) TO #ARRAY2 (4,*)
...

Using a Slash before an Array Occurrence

If a variable name is followed by a 4-digit number enclosed in parentheses, Natural interprets this number as a
line-number reference to a statement. Therefore a 4-digit array occurrence must be preceded by a slash "/" to indicate
that it is an array occurrence; for example:

 #ARRAY(/1000) not: #ARRAY(1000)

because the latter would be interpreted as a reference to source code line 1000.

If an index variable name could be misinterpreted as a format/length specification, a slash "/" must be used to
indicate that an index is being specified. If, for example, the occurrence of an array is defined by the value of the
variable "N7", the occurrence must be specified as:

 #ARRAY (/N7) not: #ARRAY (N7)

7Copyright Software AG 2002

Index NotationGeneral Information

because the latter would be misinterpreted as the definition of a 7-byte numeric field.

Referencing a Database Array

Referencing Multiple-Value Fields and Periodic-Group Fields

A multiple-value field or periodic-group field within a view/DDM may be defined and referenced using various
index notations.

For example, the first to tenth values and the Ith to Ith+10 values of the same multiple-value field/periodic-group
field of a database record:

 DEFINE DATA LOCAL 1 I(I2) 1 EMPLOY-VIEW VIEW OF EMPLOYEES 2 LANG (1:10) 2 LANG (I:I + 10) END-DEFINE

or:

 RESET I(I2) ... READ EMPLOYEES OBTAIN LANG(1:10) LANG(I:I + 10)

Note:
The same lower bound index may only be used once per array, (this applies to constant indexes as well as variable
indexes). For an array definition using a variable index, the lower bound must be specified using the variable by
itself, and the upper bound must be specified using the same variable plus a constant.

Referencing Arrays defined with Constants

An array defined with constants may be referenced using either constants or variables. The upper bound of the array
cannot be exceeded. The upper bound will be checked by Natural at compilation time if a constant is used.

 RESET I(I2) I = 1 READ EMPLOYEES OBTAIN LANG(1:10) WRITE LANG(1) / LANG(5:9) / LANG(1:10)

 DEFINE DATA LOCAL 1 I(I2) 1 EMPLOY-VIEW VIEW OF EMPLOYEES 2 LANG (1:10) END-DEFINE *
 READ EMPLOY-VIEW FOR I 1 TO 5 WRITE LANG(1.I)
 END-FOR END-READ END

If a multiple-value field or periodic-group field is defined several times using constants and is to be referenced using
variables, the following syntax is used:

 DEFINE DATA LOCAL 1 I(I2)
 1 J(I2)
 1 EMPLOY-VIEW VIEW OF EMPLOYEES 2 LANG (1:5) 2 LANG (11:20) END-DEFINE *
 READ EMPLOY-VIEW FOR I 1 TO 2 FOR J I TO 4 DISPLAY ’LANGUAGE’ LANG(1.I:J) END-FOR END-FOR END-READ END

Referencing Arrays defined with Variables

Multiple-value fields or periodic-group fields in arrays defined with variables must be referenced using the same
variable.

 RESET I(I2) I = 1 READ EMPLOYEES OBTAIN LANG(I:I+10) WRITE LANG(I) / LANG (I+5:I+6) END

If a different index is to be used, an unambiguous reference to the first encountered definition of the array with
variable index must be made. This is done by qualifying the index expression as shown below:

 RESET I(I2) J(I2) I = 1 J = 1 READ EMPLOYEES OBTAIN LANG(I:I+10) WRITE LANG(I.J) / LANG(I.1:5) END

The expression "I." is used to create an unambiguous reference to the array definition and "positions" to the first
value within the read array range (LANG(I: I + 10)).

The current content of "I" at the time of the database access determines the starting occurrence of the database array.

Copyright Software AG 20028

General InformationReferencing a Database Array

Referencing Multiple-Defined Arrays

For multiple-defined arrays, a reference with qualification of the index expression is usually necessary to ensure an
unambiguous reference to the desired array range.

Example:

DEFINE DATA LOCAL 1 I(I2) INIT <1> 1 J(I2) INIT <2> 1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 LANG (1:10)
 2 LANG (5:20)END-DEFINEREAD (2) EMPLOY-VIEW WRITE LANG(1.1:10) / LANG(5.5:15) DISPLAY LANG(1.I:I+2) / LANG(5.J)END-READ END

A similar syntax is also used if multiple-value fields or periodic-group fields are defined using index variables.

Example:

 DEFINE DATA LOCAL 1 I(I2) INIT <1> 1 J(I2) INIT <1> 1 N(I2) INIT <1> 1 M(I2) INIT <1> 1 EMPLOY-VIEW VIEW OF EMPLOYEE S 2 LANG (I:I+10) 2 LANG (J:J+5) 2 LANG (1:2) END-DEFINE READ (2) EMPLOY-VIEW WRITE LANG(I.I) / LANG(I.I:I+10) DISPLAY LANG(J.N) / LANG(J.N:M) DISPLAY LANG(1.N) / LANG(1.N:M) END-READ END

Referencing the Internal Count for a Database Array

It is sometimes necessary to reference a multiple-value field and/or a periodic group without knowing how many
values/occurrences exist in a given record. Adabas maintains an internal count of the number of values of each
multiple-value field and the number of occurrences of each periodic group. This count may be referenced by
specifying "C*" immediately before the field name. See also the data-area-editor line command ".*" (as described in
your Natural User’s Guide).

The count is returned in format N3.

Examples:

C*LANG Returns the count of the number of values for the multiple-value field LANG.

C*INCOME Returns the count of the number of occurrences for the periodic group INCOME.

C*BONUS(1) Returns the count of the number of values for the multiple-value field BONUS in periodic group
occurrence 1 (assuming that BONUS is a multiple-value field within a periodic group.)

Note for SQL databases:
The C* notation cannot be used for SQL databases.

Note for VSAM databases:
The C* notation does not return the number of values/occurrences but the maximum occurrence/value as defined in
the DDM (MAXOCC).

Example of C* Variable:

 /* EXAMPLE ’ICOUNT’: /* USING C*NOTATION TO OBTAIN INTERNAL COUNT FOR DATABASE ARRAY /** ***************************** LIMIT 2 READ EMPLOYEES BY CITY OBTAIN SALARY(1:5) WRITE NOTITLE ’NAME:’ NAME / ’NUMBER OF LANGUAG ES SPOKEN:’ C*LANG 5X ’LANGUAGE 1:’ LANG (1) 5X ’LANGUAGE 2:’ LANG (2) /*** ************** WRITE ’SALARY DATA:’ FOR #A (N1) FROM 1 TO C*INCOME WRITE ’SALARY’ #A SALARY (1.#A) LOOP /*** WRITE ’THIS YEAR BONUS:’ C*BONUS(1) BONUS (1,1) BONUS (1,2) / ’LAST YEAR BONUS:’ C*BONUS(2) BONUS (2,1) BONUS (2,2) SKIP 1 END

 NAME: SENKONUMBER OF LANGUAGES SPOKEN: 1 LANGUAGE 1: ENG LANGUAGE 2:SALARY DATA:SALARY 1 31500SALARY 2 29900SALARY 3 28100SALARY 4 26600SALARY 5 25200THIS YEAR BONUS: 0 0 0LAST YEAR BONUS: 0 0 0NAME: GODEFROYNUMBER OF LANGUAGES SPOKEN: 1 LANGUAGE 1: FRE LANGUAGE 2:SALARY DATA:SALARY 1 170300THIS YEAR BONUS: 1 50000 0LAST YEAR BONUS: 0 0 0

C* for Multiple-Value Fields Within Periodic Groups

For a multiple-value field within a periodic group, you can also define a C* variable with an index range
specification.

The following examples use the multiple-value field BONUS, which is part of the periodic group INCOME. All
three examples yield the same result.

Example 1 - Reporting Mode:

 READ EMPLOYEES BY PERSONNEL-ID FROM 11100117 OBTAIN C*BONUS (1:3) BONUS (1:3,1:3) * DISPLAY C*BONUS (1:3) BONUS (1:3,1:3) END

9Copyright Software AG 2002

Referencing the Internal Count for a Database ArrayGeneral Information

Example 2 - Structured Mode:

 DEFINE DATA LOCAL 1 EMP VIEW OF EMPLOYEES 2 PERSONNEL-ID 2 INCOME (1:3) 3 C*BONUS 3 BONUS (1:3) END-DEFINE READ EM P BY PERSONNEL-ID FROM 11100117 DISPLAY C*BONUS (1:3) BONUS (1:3,1:3) END-READ END

Example 3 - Structured Mode:

 DEFINE DATA LOCAL 1 EMP VIEW OF EMPLOYEES 2 PERSONNEL-ID 2 C*BONUS (1:3) 2 INCOME (1:3) 3 BONUS (1:3) END-DEFINE REA D EMP BY PERSONNEL-ID FROM 11100117 DISPLAY PERSONNEL-ID C*BONUS (*) BONUS (*,*) END-READ END

Note:
As the Adabas format buffer does not permit ranges for count fields, they are generated as individual fields; therefore
a C* index range for a large array may cause an Adabas format buffer overflow.

Qualifying Data Structures

To identify a field when referencing it, you may qualify the field; that is, before the field name, you specify the name
of the level-1 data element in which the field is located and a period.

If a field cannot be identified uniquely by its name (for example, if the same field name is used in multiple
groups/views), you must qualify the field when you reference it.

The combination of level-1 data element and field name must be unique.

Example:

 DEFINE DATA LOCAL 1 FULL-NAME 2 LAST-NAME (A20) 2 FIRST-NAME (A15) 1 OUTPUT-NAME 2 LAST-NAME (A20) 2 FIRST-NAME (A15) END-DEFINE ... MOVE FULL-NAME.LAST-NAME TO OUTPUT-NAME.LAST-NAME ...

The qualifier must be a level-1 data element.

Example:

 DEFINE DATA LOCAL 1 GROUP1 2 SUB-GROUP 3 FIELD1 (A15) 3 FIELD2 (A15) END-DEFINE ... MOVE ’ABC’ TO GROUP1.FIELD1 ...

Note:
If you use the same name for a user-defined variable and a database field (which you should not do anyway), you
must qualify the database field when you want to reference it; because if you do not, the user-defined variable will be
referenced instead.

Constants
Numeric Constants
Alphanumeric Constants
Date and Time Constants
Hexadecimal Constants
Logical Constants
Floating Point Constants
Handle Constants

Constants are used throughout Natural programs. This section discusses the types of constants that are supported and
how they are used.

Copyright Software AG 200210

General InformationConstants

Numeric Constants

A numeric constant may contain 1 to 29 numeric digits. A numeric constant used in a COMPUTE, MOVE, or
arithmetic statement may contain a decimal point and sign notation.

Examples:

 MOVE 3 TO #XYZ COMPUTE #PRICE = 23.34 COMPUTE #XYZ = -103 COMPUTE #A = #B * 6074

Note:
Internally, numeric constants without decimal digits are represented in integer form (format I), while numeric
constants with decimal digits, as well as numeric constants without decimal digits that are too large to fit into format
I, are represented in packed form (format P).
On mainframe computers, numeric constants are represented internally in packed form (format P); exception: if a
numeric constant is used in an arithmetic operation in which the other operand is an integer variable (format I), the
numeric constant is represented in integer form (format I).

Validation of Numeric Constants

When numeric constants are used within one of the statements MOVE, COMPUTE, or DEFINE DATA with INIT
option, Natural checks at compilation time whether a constant value fits into the corresponding field. This avoids
runtime errors in situations where such an error condition can already be detected during compilation.

Alphanumeric Constants

An alphanumeric constant may contain 1 to 253 alphanumeric characters.

An alphanumeric constant must be enclosed in either apostrophes (’) or quotation marks (").

Examples:

 MOVE ’ABC’ TO #FIELDX MOVE ’% INCREASE’ TO #TITLE DISPLAY "LAST-NAME" NAME

An alphanumeric constant that is used to assign a value to a user-defined variable must not be split between
statement lines.

Apostrophes Within Alphanumeric Constants

If you want an apostrophe to be part of an alphanumeric constant that is enclosed in apostrophes, you must write this
as two apostrophes or as a single quotation mark.
If you want an apostrophe to be part of an alphanumeric constant that is enclosed in quotation marks, you write this
as a single apostrophe.

Example:

If you want the following to be output:

 HE
 SAID, ’HELLO’

you can use any of the following notations:

 WRITE ’HE SAID, ’’HELLO’’’ WRITE ’HE SAID, "HELLO"’ WRITE "HE SAID,
 ""HELLO""" WRITE "HE SAID, ’HELLO’"

11Copyright Software AG 2002

Numeric ConstantsGeneral Information

Note:
If quotation marks are not converted to apostrophes as shown above, this is due to the setting of the profile parameter
TQ; ask your Natural administrator for details.

Concatenation of Alphanumeric Constants

Alphanumeric constants may be concatenated to form a single value by use of a hyphen.

Examples:

 MOVE ’XXXXXX’ - ’YYYYYY’ TO #FIELD MOVE "ABC" - ’DEF’ TO #FIELD

In this way, alphanumeric constants can also be concatenated with hexadecimal constants.

Date and Time Constants

A date constant may be used in conjunction with a format D variable. Date constants may have the following
formats:

D’YYYY-MM-DD’ International date format

D’DD.MM.YYYY’ German date format

D’DD/MM/YYYY’ European date format

D’MM/DD/YYYY’ USA date format

Example:

 DEFINE DATA LOCAL 1 #DATE (D) END-DEFINE ... MOVE D’1997-04-27’ TO #DATE ...

The default date format is controlled by the profile parameter DTFORM as set by the Natural administrator.

A time constant may be used in conjunction with a format T variable. A time constant has the following format:

T’ hh:ii:ss’

where

Character Explanation

hh hours

ii minutes

ss seconds

Example:

 DEFINE DATA LOCAL 1 #TIME (T) END-DEFINE ... MOVE T’11:33:00’ TO #TIME ...

Copyright Software AG 200212

General InformationDate and Time Constants

Extended Time Constants

A time variable (format T) can contain date and time information, date information being a subset of time
information; however, with a "normal" time constant (prefix "T") only the time information of a time variable can be
handled:

T’ hh:ii:ss’

With an extended time constant (prefix "E"), it is possible to handle the full content of a time variable, including the
date information:

E’yyyy-mm-dd hh:ii:ss’

Apart from that, the use of an extended time constant in conjunction with a time variable is the same as for a normal
time constant.

Note:
The format in which the date information has to be specified in an extended time constant depends on the setting of
the profile parameter DTFORM. The extended time constant shown above assumes DTFORM=I (international date
format).

Hexadecimal Constants

A hexadecimal constant may be used to enter a value which cannot be entered as a standard keyboard character.

A hexadecimal constant is prefixed with an "H". The constant itself must be enclosed in apostrophes and may consist
of the hexadecimal characters 0 - 9, A - F. Two hexadecimal characters are required to represent one byte of data.

The hexadecimal representation of a character varies depending on whether your computer uses an ASCII or
EBCDIC character set. When you transfer hexadecimal constants to another computer, you may therefore have to
convert the characters.

ASCII Examples:

 H’313233’ (equivalent to the alphanumeric constant ’123’) H’414243’ (equivalent to the alphanumeric constant ’ABC’)

EBCDIC Examples:

 H’F1F2F3’ (equivalent to the alphanumeric constant ’123’) H’C1C2C3’ (equivalent to the alphanumeric constant ’ABC’)

Hexadecimal constants may be concatenated by using a hyphen between the constants.

ASCII Examples:

 H’414243’ - H’444546’ (equivalent to ’ABCDEF’)

EBCDIC Examples:

 H’C1C2C3’ - H’C4C5C6’ (equivalent to ’ABCDEF’)

In this way, hexadecimal constants can also be concatenated with alphanumeric constants.

Note:
When a hexadecimal constant is transferred to another field, it will be treated as an alphanumeric value.
Under UNIX, if a hexadecimal constant is output that contains any characters from the ranges H’00’ to H’1F’ or
H’80’ to H’A0’, these characters will not be output, as they would be interpreted as terminal control characters. As
of version 2.2 these hex constants are not suppressed.

13Copyright Software AG 2002

Hexadecimal ConstantsGeneral Information

Logical Constants

The logical constants "TRUE" and "FALSE" may be used to assign a logical value to a variable defined with format
L.

Example:

 DEFINE DATA LOCAL 1 #FLAG (L) END-DEFINE ... MOVE TRUE TO #FLAG ... IF #FLAG ... statement ... MOVE FALSE TO #FLAG END-I F ...

Floating Point Constants

Floating point constants can be used with variables defined with format F.

Example:

 DEFINE DATA LOCAL 1 #FLT1 (F4) END-DEFINE ... COMPUTE #FLT1 = -5.34E+2 ...

See information on arithmetic involving floating-point numbers.

Attribute Constants

Attribute constants can be used with variables defined with C format. This type of constant must be enclosed within
parentheses.

The following attributes may be used:

AD=D default CD=BL blue

AD=B blinking CD=GR green

AD=I intensified CD=NE neutral

AD=N non-display CD=PI pink

AD=V reverse video CD=RE red

AD=U underlined CD=TU turquoise

AD=C cursive/italic CD=YE yellow

AD=Y dynamic attribute

AD=P protected

Example:

 DEFINE DATA LOCAL 1 #ATTR (C) 1 #FIELD (A10) END-DEFINE ... MOVE (AD=I CD=BL) TO #ATTR ... INPUT #FIELD (CV=#ATTR) ...

Handle Constants

The handle constant NULL-HANDLE can be used with GUI handles and object handles.

For further information on GUI handles, see the Natural User’s Guide for Windows. For further information on
object handles, see the NaturalX documentation.

Copyright Software AG 200214

General InformationLogical Constants

Report Specification - rep
"(rep)" is the output report identifier for which a statement is applicable. If a Natural program is to produce multiple
reports, the notation "(rep)" must be specified with each output statement which is to be used to create output for any
report other than the first report (report 0). A value of 1 - 31 may be specified.

On mainframe computers, this notation only applies to reports created in batch mode, to reports under Com-plete,
CMS, IMS/TM or TIAM; or when using Natural Advanced Facilities under CICS, TSO or UTM.

Examples:

DISPLAY (1) NAME ...WRITE (4) NAME ...

The value for (rep) may also be a logical name which has been assigned using the DEFINE PRINTER statement.

Example:

DEFINE PRINTER (LIST=5) OUTPUT ’LPT1’WRITE (LIST) NAME ...

Text Notation
’text’ specifies text to be used in conjunction with an INPUT, DISPLAY, WRITE, WRITE TITLE or WRITE
TRAILER statement. The text must be enclosed in either apostrophes (’) or quotation marks ("). The text itself may
be 1 to 72 characters and must not be continued from one line to the next. Text elements may be concatenated by
using a hyphen.

Examples:

 REINPUT ’PLEASE ENTER A VALID VALUE’ WRITE "NEW SALARY" #NEW-SALARY WRITE ’TEXT1’-’TEXT2’-’TEXT3’

If you want an apostrophe to be part of a text string that is enclosed in apostrophes, you must write this as two
apostrophes or as a single quotation mark. Either notation will be output as a single apostrophe.
If you want an apostrophe to be part of a text string that is enclosed in quotation marks, you write this as a single
apostrophe.

Examples:

 #FIELDA = ’O’’CONNOR’ #FIELDA = ’O"CONNOR’ #FIELDA = "O’CONNOR"

In all three cases, the result will be:

 O’CONNOR

Note:
If quotation marks are not converted to apostrophes as shown above, this is due to the setting of the profile parameter
TQ; ask your Natural administrator for details.

If a single character is to be output several times as text, you use the following notation:

’c’(n)

As c you specify the character, and as n the number of times the character is to be generated. The maximum value for
n is 249.

15Copyright Software AG 2002

Report Specification - repGeneral Information

Example:

 WRITE ’*’(3)

Instead of apostrophes before and after the character c you can also use quotation marks.

User Comments
You have the following possibilities for entering your comments in source code:

If you wish to use an entire source-code line for a user comment, you enter one of the following at the
beginning of the line:

an asterisk and a blank (*),
two asterisks (**), or
a slash and an asterisk (/*):
* USER COMMENT
** USER COMMENT
/* USER COMMENT

If you wish to use only the latter part of a source-code line for a user comment, you enter a blank, a slash and an
asterisk (/*); the remainder of the line after this notation is thus marked as a comment:
ADD 5 TO #A /* USER COMMENT

End of a Statement
To explicitly mark the end of a statement, you can place a semicolon (;) between the statement and the next
statement. This can be used to make the program structure clearer, but is not required.

Logical Condition Criteria
Relational Expression
Extended Relational Expression
MASK Option
SCAN Option
BREAK Option
IS Option
Evaluation of a Logical Variable
Modified Control Variables
SPECIFIED Option
Fields Used Within Logical Condition Criteria
Logical Operators in Complex Logical Expressions

The basic criterion is a relational expression. Multiple relational expressions may be combined with logical operators
(AND, OR) to form complex criteria.

Arithmetic expressions may also be used to form a relational expression.

Logical condition criteria can be used in the following statements:

Copyright Software AG 200216

General InformationUser Comments

Statement Usage

FIND A WHERE clause containing logical condition criteria may be used to indicate criteria in
addition to the basic selection criteria as specified in the WITH clause. The logical condition
criteria specified with the WHERE clause are evaluated after the record has been selected
and read.

In a WITH clause, "basic search criteria" (as described with the FIND statement) are used,
but not logical condition criteria.

READ A WHERE clause containing logical condition criteria may be used to specify whether a
record that has just been read is to be processed. The logical condition criteria are evaluated
after the record has been read.

HISTOGRAM A WHERE clause containing logical condition criteria may be used to specify whether the
value that has just been read is to be processed. The logical condition criteria are evaluated
after the value has been read.

ACCEPT/REJECT An IF clause may be used with an ACCEPT or REJECT statement to specify logical
condition criteria in addition to that specified when the record was selected/read with a
FIND, READ, or HISTOGRAM statement. The logical condition criteria are evaluated after
the record has been read and after record processing has started.

IF Logical condition criteria are used to control statement execution.

DECIDE FOR Logical condition criteria are used to control statement execution.

REPEAT The UNTIL or WHILE clause of a REPEAT statement contain logical condition criteria
which determine when a processing loop is to be terminated.

Relational Expression

17Copyright Software AG 2002

Relational ExpressionGeneral Information

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand1 C S A N E A N P I F B D T L G O yes yes

Operand2 C S A N E A N P I F B D T L G O yes no

For an explanation of the Operand Definition Table shown above, see Syntax Symbols and Operand Definition
Tables in the Natural Statements documentation. In the "Possible Structure" section of the table above, "E" stands for
arithmetic expressions; that is, any arithmetic expression may be specified as an operand within the relational
expression.

Examples:

 IF NAME = ’SMITH’ IF LEAVE-DUE GT 40 IF NAME = #NAME

For information on comparing arrays in a relational expression, see Processing of Arrays.

Note:
If a floating-point operand is used, comparison is performed in floating point. Floating-point numbers as such have
only a limited precision; therefore, rounding/truncation errors cannot be precluded when numbers are converted
to/from floating-point representation.

Arithmetic Expressions in Logical Conditions

The following example shows how arithmetic expressions can be used in logical conditions:

IF #A + 3 GT #B - 5 AND #C * 3 LE #A + #B

Handles in Logical Conditions

If the operands in a relation expression are handles, only EQUAL and NOT EQUAL operators may be used.

SUBSTRING Option in Relational Expression

Copyright Software AG 200218

General InformationRelational Expression

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand1 C S A N A yes yes

Operand2 C S A N A yes no

Op3/Op5 C S N P I yes no

Op4/Op6 C S N P I yes no

With the SUBSTRING option, you can compare a part of an alphanumeric field. After the field name (operand1)
you specify first the starting position (op3) and then the length (op4) of the field portion to be compared.

Also, you can compare a field value with part of another field value. After the field name (operand2) you specify
first the starting position (op5) and then the length (op6) of the field portion operand1 is to be compared with.

You can also combine both forms, that is, you can specify a SUBSTRING for both operand1 and operand2.

Examples:

This expression compares the 5th to 12th position inclusive of the value in field #A with the value of field #B:

SUBSTRING(#A,5,8) = #B

This expression compares the value of field #A with the 3rd to 6th position inclusive of the value in field #B:

#A = SUBSTRING(#B,3,4)

Note:
If you omit op3/op5, the starting position is assumed to be "1". If you omit op4/op6, the length is assumed to be from
the starting position to the end of the field.

Extended Relational Expression

19Copyright Software AG 2002

Extended Relational ExpressionGeneral Information

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand1 C S A N* E A N P I F B D T G O yes no

Operand2 C S A N* E A N P I F B D T G O yes no

Operand3 C S A N* E A N P I F B D T G O yes no

Operand4 C S A N* E A N P I F B D T G O yes no

Operand5 C S A N* E A N P I F B D T G O yes no

Operand6 C S A N* E A N P I F B D T G O yes no

* Mathematical functions and system variables are permitted.
Break functions are not permitted.

Operand3 can also be specified using a MASK or SCAN option; that is, it can be specified as:

MASK (mask-definition) [operand]
MASK operand
SCAN operand

For details on these options, see the sections MASK Option and SCAN Option.

Examples:

 IF #A = 2 OR = 4 OR = 7 IF #A = 5 THRU 11 BUT NOT 7 THRU 8

MASK Option

With the MASK option, you can check selected positions of a field for a specific content.

Constant Mask

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand1 C S A N A N P yes no

Operand2 C S A N P B yes no

Operand2 can only be used if the mask-definition contains at least one "X". Operand1 and operand2 must be
format-compatible: if operand1 is of format A, operand2 must be of format A, B or N; if operand1 is of format N or
P, operand2 must be of format N or P. An "X" in the the mask-definition selects the corresponding positions of the
content of operand1 and operand2 for comparison.

Copyright Software AG 200220

General InformationMASK Option

Variable Mask

Apart from a constant mask-definition (see above), you may also specify a variable mask definition:

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand1 C S A N A N P yes no

Operand2 S A yes no

The content of operand2 will be taken as the mask definition. Trailing blanks in operand2 will be ignored.

Characters in a Mask

The following characters may be used within a mask definition (the mask definition is contained in mask-definition
for a constant mask and operand2 for a variable mask):

21Copyright Software AG 2002

MASK OptionGeneral Information

Character Meaning

. or ? or _ Indicates a single position that is not to be checked.

* or % Indicates any number of positions not to be checked.

/ (Slash) Used to check if a value ends with a specific character (or string of characters).

For example, the following condition will be true if there is either an "E" in the last position of the
field, or the last "E" in the field is followed by nothing but blanks:

IF #FIELD = MASK (*’E’/)

A The position is to be checked for an alphabetical character (upper or lower case).

’c’ One or more positions are to be checked for the characters bounded by apostrophes (a double
apostrophe indicates that a single apostrophe is the character to be checked for).

C The position is to be checked for an alphabetical character (upper or lower case), a numeric character,
or a blank.

DD The two positions are to be checked for a valid day notation (01 - 31; dependent on the values of MM
and YY/YYYY, if specified; see also Checking Dates).

H The position is to be checked for hexadecimal content (A - F, 0 - 9).

L The position is to be checked for a lower-case alphabetical character (a - z).

MM The positions are to be checked for a valid month (01 - 12).

N The position is to be checked for a numeric digit.

n... One (or more) positions are to be checked for a numeric value in the range 0 - n.

n1-n2
or
n1:n2

The positions are checked for a numeric value in the range n1-n2.

n1 and n2 must be of the same length.

P The position is to be checked for a displayable character (U, L, N or S).

S The position is to be checked for special characters.

U The position is to be checked for an upper-case alphabetical character (A - Z).

X The position is to be checked against the equivalent position in the value (operand2) following the
mask-definition.

"X" is not allowed in a variable mask definition, as it makes no sense.

YY The two positions are to be checked for a valid year (00 - 99). See also Checking Dates.

YYYY The four positions are checked for a valid year (0000 - 2699).

Z The position is to be checked for a character whose left half-byte is hexadecimally 3 or 7 (ASCII) or A
- F (EBCDIC), and whose right half-byte is hexadecimally 0 - 9.

This may be used to correctly check for numeric digits in negative numbers. With "N" (which indicates
a position to be checked for a numeric digit), a check for numeric digits in negative numbers leads to
incorrect results, because the sign of the number is stored in the last digit of the number, causing that
digit to be hexadecimally represented as non-numeric.

Within a mask, use only one "Z" for each sequence of numeric digits that is checked.

Copyright Software AG 200222

General InformationMASK Option

Mask Length

The length of the mask determines how many positions are to be checked.

Example:

 DEFINE DATA LOCAL 1 #CODE (A15) END-DEFINE ... IF #CODE = MASK (NN’ABC’....NN) ...

The first two positions of #CODE are to be checked for numeric content. The three following positions are checked
for the contents "ABC". The next four positions are not to be checked. Positions ten and eleven are to be checked
for numeric content. Positions twelve to fifteen are not to be checked.

Checking Dates

Only one date may be checked within a given mask.

When dates are checked for a day (DD) and no month (MM) is specified in the mask, the current month will be
assumed.

When dates are checked for a day (DD) and no year (YY or YYYY) is specified in the mask, the current year will be
assumed.

When dates are checked for a 2-digit year (YY), the current century will be assumed if the profile parameter YSLW
is set to "0". If the YSLW parameter is set to another value, the century will be determined by the "year sliding
window" (as described under profile parameter YSLW in your Natural Operations documentation).

Examples:

Example 1:

 MOVE 1131 TO #DATE (N4) IF #DATE = MASK (MMDD)

In this example, month and day are checked for validity. The value for month (11) will be considered valid,
whereas the value for day (31) will be invalid since the 11th month has only 30 days.

Example 2:

 IF #DATE(A8) = MASK (MM’/’DD’/’YY)

In this example, the content of the field #DATE is be checked for a valid date with the format MM/DD/YY
(month/day/year).

Example 3:

 IF #DATE (A4) = MASK (19-20YY)

In this example, the content of field #DATE is checked for a two-digit number in the range 19 to 20 followed by a
valid two-digit year (00 through 99). The century is supplied by Natural as described above.
Note: Although apparent, the above mask does not allow to check for a valid year in the range 1900 through 2099,
because the numeric value range 19-20 is checked independent of the year validation.
To check for year ranges, code one check for the date validation and another for the range validation:

 IF #DATE (A10) = MASK (YYYYŸ-‡MMŸ-‡DD) AND #DATE = MASK (19-20)

23Copyright Software AG 2002

MASK OptionGeneral Information

Checking Against the Content of Constants or Variables

If the value for the mask check is to be taken from either a constant or a variable, this value (operand2) must be
specified immediately following the mask-definition.

Operand2 must be at least as long as the mask.

In the mask, you indicate each position to be checked with "X", and each position not to be checked with "." (or "?"
or "_").

Example:

 DEFINE DATA LOCAL 1 #NAME (A15) END-DEFINE ... IF #NAME = MASK (..XX) ’ABCD’ ...

It is checked whether the field #NAME contains "CD" in the third and fourth positions. Positions
one and two are not checked.

The length of the mask determines how many positions are to be checked. The mask is left-justified against any field
or constant used in the mask operation. The format of the field (or constant) on the right side of the expression must
be the same as the format of the field on the left side of the expression.

If the field to be checked (operand1) is of format A, any constant used (operand2) must be enclosed in apostrophes.
If the field is numeric, the value used must be a numeric constant or the content of a numeric database field or
user-defined variable.

In either case, any characters/digits within the value specified which do not match positionally the "X" indicator
within the mask are ignored.

The result of the MASK operation is true when the indicated positions in both values are identical.

Example:

 /* EXAMPLE ’LCCMASK’ /* EXAMPLE OF USING MASK OPTION WITHIN LOGICAL CONDITION /*** ******** DEFINE DATA LOCAL 1 EMPLOY-VIEW VIEW OF EMPLOYEES 2 CITY END-DEFINE /*** ******** HISTOGRAM EMPLOY-VIEW CITY IF CITY = MASK (....XX) ’....NN’ DISPLAY NOTITLE CITY *NUMBER END-IF END-HISTOGRAM /*** END

In the above example, the record will be accepted if the fifth and sixth positions of the field CITY each contain the character "N".

Range Checks

When performing range checks, the number of positions verified in the supplied variable is defined by the precision
of the value supplied in the mask specification. For example, a mask of (...193...) will verify positions 4 to 6 for a
three-digit number in the range 000 to 193.

Additional Examples of Mask Definitions:

In this example, each character of #NAME is checked for an alphabetical character:
IF #NAME (A10) = MASK (AAAAAAAAAA)

In this example, positions 4 to 6 of #NUMBER are checked for a numeric value:
IF #NUMBER (A6) = MASK (...NNN)

In this example, positions 4 to 6 of #VALUE are to be checked for the value "123":
IF #VALUE(A10) = MASK (...’123’)

This example will check if #LICENSE contains a license number which begins with "NY-" and whose last five
characters are identical to the last five positions of #VALUE:
DEFINE DATA LOCAL
 1 #VALUE(A8)
 1 #LICENSE(A8)
END-DEFINE
INPUT ’ENTER KNOWN POSITIONS OF LICENSE PLATE:’ #VALUE

Copyright Software AG 200224

General InformationMASK Option

IF #LICENSE = MASK (’NY-’XXXXX) #VALUE

The following condition would be met by any value which contains "NAT" and "AL" no matter which and how
many other characters are between "NAT" and "AL" (this would include the values Natural and
NATIONALITY as well as NATAL):
MASK(’NAT’*’AL’)

Checking Packed or Unpacked Numeric Data

Legacy applications often have packed or unpacked numeric variables redefined with alphanumeric or binary fields.
Such redefinitions are not recommended, because using the packed or unpacked variable in an assignment or
computation may lead to errors or unpredictable results. To validate the contents of such a redefined variable before
the variable is used, use the N option as many as number of digits - 1 times followed by a single Z option.

Examples:

IF #P1 (P1) = MASK (Z)IF #N4 (N4) = MASK (NNNZ)IF #P5 (P5) = MASK (NNNNZ)

SCAN Option

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand1 C S A N A N P yes no

Operand2 C S A B* yes no

* Operand2 may only be binary if operand1 is alphanumeric.

The SCAN option is used to scan for a specific value within a field.

The characters used in the SCAN option (operand2) may be specified as an alphanumeric constant (a character string
bounded by apostrophes) or the contents of an alphanumeric database field or user-defined variable.

Trailing blanks are automatically eliminated from the value. Therefore, the SCAN option cannot be used to scan for
blanks.

If operand1 is alphanumeric, operand2 may also be binary.

The field to be scanned (operand1) may be of format A, N or P. The SCAN operation may be specified with the
equal (EQ) or not equal (NE) operators.

The length of the character string for the SCAN operation should be less than the length of the field to be scanned. If
the length of the character string specified is identical to the length of the field to be scanned, then an EQUAL
operator should be used instead of SCAN.

25Copyright Software AG 2002

SCAN OptionGeneral Information

Example of SCAN Option:

 /* EXAMPLE ’LCCSCAN’ /* EXAMPLE OF USING SCAN OPTION IN LOGICAL CONDITION /** * DEFINE DATA LOCAL 1 EMPLOY-VIEW VIEW OF EMPLOYEES 2 NAME 1 #VALUE (A4) 1 #COMMENT (A10) INIT <’ ’> END-DEFINE /************ *************************************** INPUT ’ENTER SCAN VALUE:’ #VALUE LIMIT 14 HISTOGRAM EMPLOY-VIEW NAME RESET #COMMENT IF NAME = SCAN #VALUE MOVE ’MATCH’ TO #COMMENT END-IF DISPLAY NOTITLE NAME *NUMBER #COMMENT END-HISTOGRAM /************************************* ************** END

ENTER SCAN VALUE: LL

 NAME NMBR #COMMENT-------------------- --------- ----------ABELLAN 1 MATCHACHIESON 1ADAM 1ADKINSON 8AECKERLE 1AFANASSIEV 2AHL 1AKROYD 1ALEMAN 1ALESTIA 1ALEXANDER 5
 ALLEGRE 1 MATCHALLSOP 1 MATCHALTINOK 1

BREAK Within Logical Condition Criteria

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand1 S A N P yes no

Note:
Dynamic or large variables are not allowed to be used as Operand1.

The BREAK option allows the current value or a portion of a value of a field to be compared to the value contained
in the same field in the previous pass through the processing loop.

Operand1 specifies the field which is to be checked.

If only part of the field is to be checked, then specify a numeric constant n, enclosed by slashes, as the number of
positions (counting from left to right) to be included in the comparison.

The result of the BREAK operation is true when a change in the specified positions of the field occurs. The result of
the BREAK operation is not true if an AT END OF DATA condition occurs.

Example:

 BREAK FIRST-NAME /1/

In this example, a check is made for a different value in the first position of the field FIRST-NAME.

Natural system functions (which are available with the AT BREAK statement) are not available with this option.

Example of BREAK Option:

 /* EXAMPLE ’LCCBRK’ /* EXAMPLE OF USING BREAK OPTION IN LOGICAL CONDITION /*** *
 DEFINE DATA LOCAL 1 EMPLOY-VIEW VIEW OF EMPLOYEES 2 NAME 2 FIRST-NAME 2 BIRTH 1 #BIRTH (A8) END-DEFINE * LIMIT 10 READ EMPLOY-VIEW BY BIRTH MOVE EDITED BIRTH (EM=YYYYMMDD) to #BIRTH IF BREAK OF #BIRTH /6/
 NEWPAGE IF LESS THAN 5 LINES LEFT WRITE / ’-’ (50) /
 END-IF DISPLAY NOTITLE BIRTH (EM=YYYY-MM-DD) NAME FIRST-NAME END-READ END

 DATE NAME FIRST-NAME OF BIRTH ---------- -------------------- -------------------- 1940-01-01 GA RRET WILLIAM 1940-01-09 TAILOR ROBERT 1940-01-09 PIETSCH VENUS 1940-01-31 LYTTLETON BETTY --
 1940-02-02 WINTRICH MARIA 1940-02-13 KUNEY MARY 1940-02-14 KOLENCE MARSHA 1940-02-24 DILWORTH TOM -- 1940-03-03 DEKKER SYLVIA 1940-03-06 S TEFFERUD BILL

IS Option - Checking Format and Length of Value

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand1 S A A yes no

This option is used to check whether the content of an alphanumeric field (operand1) can be converted to a specific
other format.

Copyright Software AG 200226

General InformationBREAK Within Logical Condition Criteria

This format for which the check is performed can be:

Nll.ll Numeric with length ll.ll.

Fll Floating point with length ll.

D Date. The following date formats are possible: dd-mm-yy, dd-mm-yyyy, ddmmyyyy (dd = day, mm = month,
yy or yyyy = year). The sequence of the day, month and year components as well as the characters between
the components are determined by the profile parameter DTFORM (which is described in your Natural
Operations documentation).

T Time (according to the default time display format).

Pll.ll Packed numeric with length ll.ll .

I ll Integer with length ll .

When the check is performed, leading and trailing blanks in operand1 will be ignored.

The IS option may, for example, be used to check the content of a field before the mathematical function VAL
(extract numeric value from an alphanumeric field) is used to ensure that it will not result in a runtime error.

Note:
The IS option cannot be used to check if the value of an alphanumeric field is in the specified "format", but if it can
be converted to that "format". To check if a value is in a specific format, you can use the MASK option.

Example of IS Option:

 /* EXAMPLE ’LCCFMT’ /* EXAMPLE OF FORMAT/LENGTH CHECK IN LOGICAL CONDITION /** *********** DEFINE DATA LOCAL 1 #FIELDA (A10) /* INPUT FIELD TO BE CHECKED 1 #FIELDB (N5) /* RECEIVING FIELD OF VAL FUNCTION 1 #DATE (A10) /* INPUT FIELD FOR DATE END-DEFINE /*** ************ INPUT #DATE #FIELDA IF #DATE IS (D) IF #FIELDA IS (N5) COMPUTE #FIELDB = VAL(#FIELDA) WRITE NOTITLE ’VAL FUNCTION OK’ // ’=’ #FIELDA ’=’ #FIELDB ELSE REINPUT ’FIELD DOES NOT FIT INTO N5 FORMAT’ MARK *#FIELDA END-IF ELSE REINPUT ’INPUT IS NOT IN DATE FORMAT (YY-MM-DD) ’ MARK *#DATE END-IF /** END

 #DATE 150487 #FIELDAINPUT IS NOT IN DATE FORMAT (YY-MM-DD)

Evaluation of a Logical Variable

Operand Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand1 C S A L no no

This option is used in conjunction with a logical variable (format L). A logical variable may take the value "TRUE"
or "FALSE". As operand1 you specify the name of the logical variable to be used.

Example of Logical Variable:

 /* EXAMPLE ’LCCLOG’ /* EXAMPLE OF LOGICAL VARIABLE IN LOGICAL CONDITION /*** *************** DEFINE DATA LOCAL 1 #SWITCH (L) INIT <TRUE> 1 #INDEX (I1) END-DEFINE /*** *************************** FOR #INDEX 1 5 WRITE NOTITLE #SWITCH (EM=FALSE/TRUE) 5X ’INDEX =’ #INDEX WRITE NOTITLE #SWITCH (EM=OFF/ON) 7X ’INDEX =’ #INDEX IF #SWITCH MOVE FALSE TO #SWITCH ELSE MOVE TRUE TO #SWITCH END-IF /** ** SKIP 1 END-FOR END

 TRUE INDEX = 1 ON INDEX = 1 FALSE INDEX = 2 OFF INDEX = 2 TRUE INDEX = 3 ON INDEX = 3 FALSE INDEX = 4 OFF INDEX = 4 TRUE INDEX = 5 ON INDEX = 5

Modified Control Variables

FIND Possible Structure Possible Formats Referencing Permitted Dynamic Definition

Operand1 S A C no no

27Copyright Software AG 2002

Evaluation of a Logical VariableGeneral Information

This option is used to determine if the content of a field which has been assigned attributes dynamically has been
modified during the execution of an INPUT statement.

Control variables referenced in an INPUT statement are always assigned the status "NOT MODIFIED" when the
map is transmitted to the terminal.

Whenever the content of a field referencing a control variable is modified, the control variable is assigned the status
"MODIFIED". When multiple fields reference the same control variable, the variable is marked "MODIFIED" if any
of these fields is modified.

If operand1 is an array, the result will be true if at least one of the array elements is modified (OR connection).

Note:
On mainframe computers, the profile parameter CVMIN (see the Natural Operations for Mainframes documentation)
may be used to determine if a control variable is also to be set to "MODIFIED" if the value of the corresponding
field is overwritten by an identical value.

Example of Modified Control Variable:

 /* EXAMPLE ’LCCMOD’ /* EXAMPLE OF MODIFIED FIELD CHECK IN LOGICAL CONDITION /** ********** DEFINE DATA LOCAL 1 #ATTR (C) 1 #A (A1) 1 #B (A1) END-DEFINE /** **** MOVE (AD=I) TO #ATTR /** INPUT (CV=#ATTR) #A #B IF #ATTR NOT MODIFIED WRITE NOTITLE ’FIELD #A OR #B HAS NOT BEEN MODIFIED’ END-IF /** IF #ATTR MODIFIED WRITE NOTITLE ’FIELD #A OR #B HAS BEEN MODIFIED’ END-IF /** END

 #A x #B

 FIELD #A OR #B HAS BEEN MODIFIED

SPECIFIED Option

This option is not available on mainframe computers.

This option is used to check whether an optional parameter in an invoked object (subprogram, external subroutine,
dialog or ActiveX control) has received a value from the invoking object or not.

An optional parameter is a field defined with the keyword OPTIONAL in the DEFINE DATA PARAMETER
statement of the invoked object. If a field is defined as OPTIONAL, a value can - but need not - be passed from an
invoking object to this field.

In the invoking statement, the notation nX is used to indicate parameters for which no values are passed.

If you process an optional parameter which has not received a value, this will cause a runtime error. To avoid such
an error, you use the SPECIFIED option in the invoked object to check whether an optional parameter has received a
value or not, and then only process it if it has.

Parameter-name is the name of the parameter as specified in the DEFINE DATA PARAMETER statement of the
invoked object.

For a field not defined as OPTIONAL, the SPECIFIED condition is always "TRUE".

Fields Used Within Logical Condition Criteria

Database fields and user-defined variables may be used to construct logical condition criteria. A database field which
is a multiple-value field or is contained in a periodic group can also be used. If a range of values for a multiple-value
field or a range of occurrences for a periodic group is specified, the condition is true if the search value is found in
any value/occurrence within the specified range.

Each value used must be compatible with the field used on the opposite side of the expression. Decimal notation may
be specified only for values used with numeric fields, and the number of decimal positions of the value must agree
with the number of decimal positions defined for the field.

Copyright Software AG 200228

General InformationSPECIFIED Option

If the operands are not of the same format, the second operand is converted to the format of the first operand.

The following table shows which operand formats can be used together in a logical condition:

Operand2

 Operand1

A Bn
(n<4)

Bn
(n>5)

D T I F L N P GH OH

A Y Y Y

Bn (n<4) Y Y Y Y Y Y Y

Bn (n>5) Y Y Y

D Y

T Y

I Y Y Y Y Y

F Y Y Y Y Y

L

N Y Y Y Y Y

P Y Y Y Y Y

GH Y

OH Y

GH = GUI handle, OH = object handle.

If an array is compared with a scalar value, each element of the array will be compared with the scalar value. The
condition will be true if at least one of the array elements meets the condition (OR connection).

If an array is compared with an array, each element in the array is compared with the corresponding element of the
other array. The result is true only if all element comparisons meet the condition (AND connection).

See also Processing of Arrays.

An Adabas phonetic descriptor cannot be used within a logical condition.

Examples of Logical Condition Criteria:

 FIND EMPLOYEES-VIEW WITH CITY = ’BOSTON’ WHERE SEX = ’M’ READ EMPLOYEES-VIEW BY NAME WHERE SEX = ’M’ ACCEPT IF LEAVE-DUE GT 45 IF #A GT #B THEN COMPUTE #C = #A + #B REPEAT UNTIL #X = 500

Logical Operators in Complex Logical Expressions

Logical condition criteria may be combined using the Boolean operators "AND", "OR", and "NOT". Parentheses
may also be used to indicate logical grouping.

The operators are evaluated in the following order:

1. () Parentheses
2. NOT Negation
3. AND AND connection
4. OR OR connection

29Copyright Software AG 2002

Logical Operators in Complex Logical ExpressionsGeneral Information

The following logical-condition-criteria may be connected by logical operators to form a complex
logical-expression: relational expressions, extended relational expressions, MASK, SCAN, and BREAK options.

The syntax for a logical-expression is as follows:

Examples of Logical Expressions:

FIND STAFF-VIEW WITH CITY = ’TOKYO’ WHERE BIRTH GT 19610101 AND SEX = ’F’IF NOT (#CITY = ’A’ THRU ’E’)

For information on comparing arrays in a logical expression, see Processing of Arrays.

Note:
If multiple logical-condition-criteria are connected with "AND", the evaluation terminates as soon as the first of
these criteria is not true.

Rules for Arithmetic Assignment
Field Initialization
Data Transfer
Field Truncation and Field Rounding
Result Format and Length in Arithmetic Operations
Arithmetic Operations with Floating-Point Numbers
Arithmetic Operations with Date and Time
Performance Considerations for Mixed Format Expressions
Precision of Results for Arithmetic Operations
Error Conditions in Arithmetic Operations
Processing of Arrays

Field Initialization

A field - user-defined variable or database field - which is to be used as an operand in an arithmetic operation must
be defined with one of the following formats: N, P, I, F, D, T.

Note for reporting mode:
A field which is to be used as an operand in an arithmetic operation must have been previously defined.
A user-defined variable or database field used as a result field in an arithmetic operation need not have been
previously defined.

All user-defined variables and all database fields defined in a DEFINE DATA statement are initialized to the
appropriate zero or blank value when the program is invoked for execution.

Data Transfer

Data transfer is performed with a MOVE or COMPUTE statement. The following table summarizes data transfer
compatibility and the rules for data transfer:

Copyright Software AG 200230

General InformationRules for Arithmetic Assignment

Sending Field Receiving Field

N / P A Bn
(n < 5)

Bn
(n > 4)

I L C D T F GH OH

N or P Y [2] [3] - Y - - - Y Y - -

A - Y [1] [1] - - - - - - - -

Bn
(n < 5)

[4] [2] [5] [5] Y - - - Y Y - -

Bn
(n > 4)

- [6] [5] [5] - - - - - - - -

I Y [2] [3] - Y - - - Y Y - -

L - [9] - - - Y - - - - - -

C - - - - - - Y - - - - -

D Y [9] Y - Y - - Y [7] Y - -

T Y [9] Y - Y - - [8] Y Y - -

F Y [9][10] [3] - Y - - - Y Y - -

GH - - - - - - - - - - Y -

OH - - - - - - - - - - - Y

Y indicates data transfer compatibility.

- indicates data transfer incompatibility.

[1]... refers to the data conversion rules.

GH = GUI handle, OH = object handle.

See also Usage of Dynamic Variables.

Data Conversion

The following rules apply to converting data values:

1. Alphanumeric to binary: The value will be moved byte by byte from left to right. The result may be truncated
or padded with trailing blank characters depending on the length defined and the number of bytes specified.

2. (N,P,I) and binary (length 1-4) to alphanumeric: The value will be converted to unpacked form and moved
into the alphanumeric field left justified, i.e., leading zeros will be suppressed and the field will be filled with
trailing blank characters. For negative numeric values, the sign will be converted to the hexadecimal notation
"Dx". Any decimal point in the numeric value will be ignored. All digits before and after the decimal point will
be treated as one integer value.

3. (N,P,I,F) to binary (1-4 bytes): The numeric value will be converted to binary (4 bytes). Any decimal point in
the numeric value will be ignored (the digits of the value before and after the decimal point will be treated as an
integer value). The resulting binary number will be positive or a two’s complement of the number depending on
the sign of the value.

4. Binary (1-4 bytes) to numeric: The value will be converted and assigned to the numeric value right justified,
i.e., with leading zeros. (Binary values of the length 1-3 bytes are always assumed to have a positive sign. For
binary values of 4 bytes, the leftmost bit determines the sign of the number: 1=negative, 0=positive.) Any
decimal point in the receiving numeric value will be ignored. All digits before and after the decimal point will
be treated as one integer value.

31Copyright Software AG 2002

Data TransferGeneral Information

5. Binary to binary: The value will be moved from right to left byte by byte. Leading binary zeros will be
inserted into the receiving field.

6. Binary (>4 bytes) to alphanumeric: The value will be moved byte by byte from left to right. The result may
be truncated or padded with trailing blanks depending on the length defined and the number of bytes specified.

7. Date (D) to time (T): If date is moved to time, it is converted to time assuming time 00:00:00:0.
8. Time (T) to date (D): If time is moved to date, the time information is truncated, leaving only the date

information.
9. L,D,T,F to A: The values are converted to display form and are assigned left justified.

10. If F is assigned to an alphanumeric field which is too short, the mantissa is reduced accordingly.

See also Usage of Large and Dynamic Variables/Fields.

Field Truncation and Field Rounding

The following rules apply to field truncation and rounding:

High-order numeric field truncation is allowed only when the digits to be truncated are leading zeros. Digits
following an expressed or implied decimal point may be truncated.
Trailing positions of an alphanumeric field may be truncated.
If the option ROUNDED is specified, the last position of the result will be rounded up if the first truncated
decimal position of the value being assigned contains a value greater than or equal to 5.
For the result precision of a division, see also Precision of Results for Arithmetic Operations.

Result Format and Length in Arithmetic Operations

The following table shows the format and length of the result of an arithmetic operation:

 I1 I2 I4 N or P F4 F8

I1 I1 I2 I4 P* F4 F8

I2 I2 I2 I4 P* F4 F8

I4 I4 I4 I4 P* F4 F8

N or P P* P* P* P* F4 F8

F4 F4 F4 F4 F4 F4 F8

F8 F8 F8 F8 F8 F8 F8

P* is determined from the integer length and precision of the operands individually for each operation, as shown
under Precision of Results for Arithmetic Operations.

The following decimal integer lengths and possible values are applicable for format I:

Format/Length Decimal Integer Length Possible Values

I1 3 -128 to 127

I2 5 -32 768 to 32 767

I4 10 -2 147 483 648 to 2 147 483 647

Copyright Software AG 200232

General InformationField Truncation and Field Rounding

Arithmetic Operations with Floating-Point Numbers

Some General Considerations

Floating-point numbers (format F) are represented as a sum of powers of two (as are integer numbers (format I)),
whereas unpacked and packed numbers (formats N and P) are represented as a sum of powers of ten.

In unpacked or packed numbers, the position of the decimal point is fixed. In floating-point numbers, however, the
position of the decimal point (as the name indicates) is "floating", that is, its position is not fixed, but depends on the
actual value.

Floating-point numbers are essential for the computing of trigonometric functions or mathematical functions such as
sinus or logarithm.

The Precision of Floating-Point Numbers

Due to the nature of floating-point numbers, their precision is limited:

For a variable of format/length F4, the precision is limited to approximately 7 digits.
For a variable of format/length F8, the precision is limited to approximately 15 digits (16 digits on mainframe
computers).

Values which have more significant digits cannot be represented exactly as a floating-point number. No matter how
many additional digits there are before or after the decimal point, a floating-point number can cover only the leading
7 or 15 (16) digits respectively.

An integer value can only be represented exactly in a variable of format/length F4 if its absolute value does not
exceed 223 -1 (224 -1 on mainframe computers).

Conversion to Floating-Point Representation

When an alphanumeric, unpacked numeric or packed numeric value is converted to floating-point format (for
example, in an assignment operation), the representation has to be changed, that is, a sum of powers of ten has to be
converted to a sum of powers of two.

Consequently, only numbers that are representable as a finite sum of powers of two can be represented exactly; all
other numbers can only be represented approximately.

Examples:

This number has an exact floating-point representation:

 1.25 = 2 0 + 2 -2

This number is a periodic floating-point number without an exact representation:

 1.2 = 2 0 + 2 -3 + 2 -4 + 2 -7 + 2 -8 + 2 -11 + 2 -12 + ...

Thus, the conversion of alphanumeric, unpacked numeric or packed numeric values to floating-point values, and vice
versa, can introduce small errors.

Platform-Dependent Differences

As already indicated by some of the differing limits mentioned above, the representation of floating-point numbers
on mainframe computers is different from their representation on other platforms.

33Copyright Software AG 2002

Arithmetic Operations with Floating-Point NumbersGeneral Information

This explains why the same application, when run on different platforms, may return slightly different results when
floating-point arithmetics are involved.

If you port a Natural application to another platform, also remember that the range of possible values for
floating-point variables on a mainframe computer is different from that on other platforms:

The possible value range for F4 and F8 variables on a mainframe computer is (approximately):
±5.4 * 10-79 to ±7.2 * 1075
The possible value range on most other platforms is (approximately):
for F4 variables: ±1.17 * 10-38 to ±3.40 * 1038

for F8 variables: ±2.22 * 10-308 to ±1.79 * 10308

Note:
The representation used by your pocket calculator may also be different from the one used by your computer - which
explains why results for the same computation may differ.

Arithmetic Operations with Date and Time

With formats D (date) and T (time), only addition and subtraction are allowed; multiplication and division are not
allowed.

Date/time values can be added to/subtracted from one another; or integer values (no decimal digits) can be added
to/subtracted from date/time values. Such integer values can be contained in fields of formats N, P, I, D, or T.

An integer value added to/subtracted from a date value is assumed to be in days. An integer value added
to/subtracted from a time value is assumed to be in tenths of seconds.

For arithmetic operations with date and time, certain restrictions apply, which are due to the Natural’s internal
handling of arithmetic operations with date and time, as explained below.

Internally, Natural handles an arithmetic operation with date/time variables as follows:

COMPUTE result-field = operand1 +/- operand2

The above statement is resolved as:

1. intermediate-result = operand1 +/- operand2
2. result-field = intermediate-result

That is, in a first step Natural computes the result of the addition/subtraction, and in a second step assigns this result
to the result field.

More complex arithmetic operations are resolved following the same pattern:

COMPUTE result-field = operand1 +/- operand2 +/- operand3 +/- operand4

The above statement is resolved as:

1. intermediate-result1 = operand1 +/- operand2
2. intermediate-result2 = intermediate-result1 +/- operand3
3. intermediate-result3 = intermediate-result2 +/- operand4
4. result-field = intermediate-result3

The internal format of such an intermediate-result depends on the formats of the operands, as shown in the tables
below.

Copyright Software AG 200234

General InformationArithmetic Operations with Date and Time

The following table shows the format of the intermediate-result of an addition (intermediate-result = operand1 +
operand2):

Format of operand1 Format of operand2 Format of intermediate-result

D D Di

D T T

D N, P, I D

T D, T, N, P, I T

N, P, I D D

N, P, I T T

The following table shows the format of the intermediate-result of a subtraction (intermediate-result = operand1 -
operand2):

Format of operand1 Format of operand2 Format of intermediate-result

D D Di

D T Ti

D N, P, I D

T D, T Ti

T N, P, I T

N, P, I D Di

N, P, I T Ti

Di is a value in internal date format; Ti is a value in internal time format; such values can be used in further
arithmetic date/time operations, but they cannot be assigned to a result field of format D (see the assignment table
below).

In complex arithmetic operations in which an intermediate result of internal format Di or Ti is used as operand in a
further addition/subtraction, its format is assumed to be D or T respectively.

The following table shows which intermediate results can internally be assigned to which result fields (result-field =
intermediate-result).

Format of result-field Format of intermediate-result Assignment possible

D D, T yes

D Di, Ti, N, P, I no

T D, T, Di, Ti, N, P, I yes

N, P, I D, T, Di, Ti, N, P, I yes

A result field of format D or T must not contain a negative value.

35Copyright Software AG 2002

Arithmetic Operations with Date and TimeGeneral Information

Examples 1 and 2 (invalid):

 COMPUTE DATE1 (D) = DATE2 (D) + DATE3 (D) COMPUTE DATE1 (D) = DATE2 (D) - DATE3 (D)

These operations are not possible, because the intermediate result of the addition/subtraction would be format Di,
and a value of format Di cannot be assigned to a result field of format D.

Examples 3 and 4 (invalid):

 COMPUTE DATE1 (D) = TIME2 (T) - TIME3 (T) COMPUTE DATE1 (D) = DATE2 (D) - TIME3 (T)

These operations are not possible, because the intermediate result of the addition/subtraction would be format Ti,
and a value of format Ti cannot be assigned to a result field of format D.

Example 5 (valid):

 COMPUTE DATE1 (D) = DATE2 (D) - DATE3 (D) + TIME3 (T)

This operation is possible. First, DATE3 is subtracted from DATE2, giving an intermediate result of format Di;
then, this intermediate result is added to TIME3, giving an intermediate result of format T; finally, this second
intermediate result is assigned to the result field DATE1.

If a format T value is assigned to a format D field, you must ensure that the time value contains a valid date
component.

Performance Considerations for Mixed Format Expressions

When doing arithmetic operations, the choice of field formats has considerable impact on performance:

For business arithmetic under OpenVMS, UNIX and Windows, only fields of format I (integer) should be used.
If your computer is equipped with a math co-processor, format F (floating point) is faster than formats N or P and
almost as fast as format I.
Without a math co-processor, format F is approximately as slow as formats N or P.

For business arithmetic on mainframe computers, only fields of format P (packed numeric) should be used. The
number of decimal digits in all operands should agree where possible.

For scientific arithmetic, only fields of format F (floating point) should be used.

In expressions where formats are mixed between numeric (N, P) and floating point (F), a conversion to floating point
format is performed. This conversion results in considerable CPU load. Therefore it is recommended to avoid mixed
format expressions in arithmetic operations.

Precision of Results for Arithmetic Operations

Copyright Software AG 200236

General InformationPerformance Considerations for Mixed Format Expressions

Operation Digits Before Decimal Point Digits After
Decimal
Point

Addition/Subtraction Fi + 1 or Si + 1
(whichever is greater)

Fd or Sd
(whichever is
greater)

Multiplication Fi + Si + 2 Fd + Sd
(maximum 7)

Division Fi + Sd (see below)

Exponentiation 15 - Fd
(Exception: On mainframe computers, if the exponent has one or more
digits after the decimal point, and on all other platforms in general, the
exponentiation is internally carried out in floating point format. See
Arithmetic Operations with Floating-Point Numbers for further
information.)

Fd

Square Root Fi Fd

F = First operand
S = Second operand
R = Result
i = Digits before decimal point
d = Digits after decimal point

Digits after Decimal Point for Division Results

The precision of the result of a division depends whether a result field is available or not:

If a result field is available, the precision is: Rd or Fd (whichever is greater) * .
If no result field is available, the precision is: Fd or Sd (whichever is greater) * .

A result field is available (or assumed to be available) in a COMPUTE and DIVIDE statement, and in a logical
condition in which the division is placed after the comparison operator (for example: IF #A = #B / #C THEN ...).
A result field is not (or not assumed to be) available in a logical condition in which the division is placed before the
comparison operator (for example: IF #B / #C = #A THEN ...).

Exception: If both dividend and divisor are of integer format and at least one of them is a variable, the division result
is always of integer format (regardless of the precision of the result field and of whether the ROUNDED option is
used or not).

* If the ROUNDED option is used, the precision of the result is internally increased by one digit before the result is
actually rounded.

Error Conditions in Arithmetic Operations

In an addition, subtraction, multiplication or division, an error occurs if the total number of digits (before and after
the decimal point) of the result is greater than 31.

In an exponentiation, an error occurs in any of the following situations:

if the base is of packed format and either the result has over 16 digits or any intermediate result has over 15
digits;
if the base is of floating-point format and the result is greater than approximately 7 * 1075.

37Copyright Software AG 2002

Error Conditions in Arithmetic OperationsGeneral Information

Processing of Arrays

Generally, the following rules apply:

All scalar operations may be applied to array elements which consist of a single occurrence.
If a variable is defined with a constant value (for example, #FIELD (I2) CONSTANT <8>), the value will be
assigned to the variable at compilation, and the variable will be treated as a constant. This means that if such a
variable is used in an array index, the dimension concerned has a definite number of occurrences.
If an assignment/comparison operation involves two arrays with a different number of dimensions, the
"missing" dimension in the array with fewer dimensions is assumed to be (1:1).

Example:

If #ARRAY1 (1:2) is assigned to #ARRAY2 (1:2,1:2),
#ARRAY1 is assumed to be #ARRAY1 (1:1,1:2).

Assignment Operations with Arrays

If an array range is assigned to another array range, the assignment is performed element by element.

If a single occurrence is assigned to an array range, each element of the range is filled with the value of the single
occurrence. (For a mathematical function, each element of the range is filled with the result of the function.)

Before an assignment operation is executed, the individual dimensions of the arrays involved are compared with one
another to check if they meet one of the conditions listed below. The dimensions are compared independently of one
another; that is, the 1st dimension of the one array is compared with the 1st dimension of the other array, the 2nd
dimension of the one array is compared with the 2nd dimension of the other array, and the 3rd dimension of the one
array is compared with the 3rd dimension of the other array.

The assignment of values from one array to another is only allowed under one of the following conditions:

The number of occurrences is the same for both dimensions compared.
The number of occurrences is indefinite for both dimensions compared.
The dimension that is assigned to another dimension consists of a single occurrence.

The following program shows which array assignment operations are possible.

Example - Array Assignments:
 DEFINE DATA LOCAL 1 A1 (N1/1:8) 1 B1 (N1/1:8) 1 A2 (N1/1:8,1:8) 1 B2 (N1/1:8,1:8) 1 A3 (N1/1:8,1:8,1:8) 1 I (I2) INIT <4> 1 J (I2) INIT <8> 1 K (I2) CONST <8> END-DEFINE * COMPUTE A1(1:3) = B1(6:8) /* allowed COMPUTE A1(1:I) = B1(1:I) /* allowed COMPUTE A1(*) = B1(1:8) /* allowed COMPUTE A1(2:3) = B1(I:I+1) /* a llowed COMPUTE A1(1) = B1(I) /* allowed COMPUTE A1(1:I) = B1(3) /* allowed COMPUTE A1(I:J) = B1(I+2) /* allowed COMPUTE A1(1:I) = B1(5:J) /* allowed COMPUTE A1(1:I) = B1(2) /* allowed COMP UTE A1(1:2) = B1(1:J) /* NOT ALLOWED (NAT0631) COMPUTE A1(*) = B1(1:J) /* NOT ALLOWED (NAT0631) COMPUTE A1(*) = B1(1:K) /* allowed COMPUTE A1(1:J) = B1(1:K) /* NOT ALLOWED (NAT0631) * COMPUTE A1(*) = B2(1,*) /* allowed COMPUTE A1(1:3) = B2(1,I:I+2) /* allowed COMPUTE A1(1:3) = B2 (1:3,1) /* NOT ALLOWED (NAT0631) * COMPUTE A2(1,1:3) = B1(6:8) /* allowed COMPUTE A2(*,1:I) = B1(5:J) /* allowed COMPUTE A2(*,1) = B1(*) /* NOT ALLOWED (NAT0631) COMPUTE A2(1:I,1) = B1(1:J) /* NOT ALLOWED (NAT0631) COMPUTE A2(1:I,1:J) = B1(1:J) /* allowed * COMPUTE A2(1,I) = B2(1,1) /* allowed COMPUTE A2(1:I,1) = B2(1:I,2) /* allowed COMPUTE A2(1:2,1:8) = B2(I:I+1,*) /* allowed * COMPUTE A3(1,1,1:I) = B1(1) /* allowe d COMPUTE A3(1,1,1:J) = B1(*) /* NOT ALLOWED (NAT0631)
 COMPUTE A3(1,1,1:I) = B1(1:I) /* allowed COMPUTE A3(1,1:2,1:I) = B2(1,1:I) /* allowed COMPUTE A3(1,1,1:I) = B2(1:2,1:I) /* NOT ALLOWED (NAT0631) END

Comparison Operations with Arrays

Generally, the following applies: if arrays with multiple dimensions are compared, the individual dimensions are
handled independently of one another; that is, the 1st dimension of the one array is compared with the 1st dimension
of the other array, the 2nd dimension of the one array is compared with the 2nd dimension of the other array, and the
3rd dimension of the one array is compared with the 3rd dimension of the other array.

The comparison of two array dimensions is only allowed under one of the following conditions:

The array dimensions compared with one another have the same number of occurrences.
The array dimensions compared with one another have an indefinite number of occurrences.
All array dimensions of one of the arrays involved are single occurrences.

The following program shows which array comparison operations are possible:

Copyright Software AG 200238

General InformationProcessing of Arrays

Example - Array Comparisons:
 DEFINE DATA LOCAL 1 A3 (N1/1:8,1:8,1:8) 1 A2 (N1/1:8,1:8)
 1 A1 (N1/1:8) 1 I (I2) INIT <4> 1 J (I2) INIT <8> 1 K (I2) CONST <8> END-DEFINE * IF A2(1,1) = A1(1) THEN IGNORE END-IF /* allowed IF A2(1,1) = A1(I) THEN IGNORE END-IF /* allowed IF A2(1,*) = A1(1) THEN IGNORE END-IF /* allowed IF A2(1,*) = A1(I) THEN IGNORE END-IF /* allowed IF A2(1,*) = A1(*) THEN IGNORE END-IF /* allowed IF A2(1,*) = A1(I -3:I+4) THEN IGNORE END-IF /* allowed IF A2(1,5 :J) = A1(1:I) THEN IGNORE END-IF /* allowed IF A2(1,*) = A1(1:I) THEN IGNORE END-IF /* NOT ALLOWE D(NAT0629) IF A2(1,*) = A1(1:K) THEN IGNORE END-IF /* allowed * IF A2(1,1) = A2(1,1) THEN IGNOR E END-IF /* allowed IF A2(1,1) = A2(1,I) THEN IGNORE END-IF /* allowed IF A2(1,*) = A2(1,1:8) THE N IGNORE END-IF /* allowed IF A2(1,*) = A2(I,I -3:I+4) THEN IGNORE END-IF /* allowed IF A2(1,1:I) = A2(1,I+1:J) THEN IGNORE END-IF /* allowed IF A2(1,1:I) = A2(1,I:I+1) THEN IGNORE END-IF /* NOT ALLOWED(NAT0629) IF A2(*,1) = A2(1,*) THEN IGNORE END-IF /* NOT ALLOWED(NAT0629) IF A2(1,1:I) = A1(2,1:K) THEN IGNORE END-IF /* N OT ALLOWED(NAT0629) * IF A3(1,1,*) = A2(1,*) THEN IGNORE END-IF /* allowed IF A3(1,1,*) = A2(1,I -3:I+4) T HEN IGNORE END-IF /* allowed IF A3(1,*,I:J) = A2(*,1:I+1) THEN IGNORE END-IF /* allowed IF A3(1,*,I:J) = A2(*,I:J) THEN IGNORE END-IF /* allowed END

When you compare two array ranges, note that the following two expressions lead to different results:

 #ARRAY1(*) NOT EQUAL #ARRAY2(*)
 NOT #ARRAY1(*) = #ARRAY2(*)

Example:

Condition A:

 IF #ARRAY1(1:2) NOT EQUAL #ARRAY2(1:2)

This is equivalent to:

 IF (#ARRAY1(1) NOT EQUAL #ARRAY2(1)) AND (#ARRAY1(2) NOT EQUAL #ARRAY2(2))

Condition A is therefore true if the first occurrence of #ARRAY1 does not equal the first occurrence of #ARRAY2
and the second occurrence of #ARRAY1 does not equal the second occurrence of #ARRAY2.

Condition B:

 IF NOT #ARRAY1(1:2) = #ARRAY2(1:2)

This is equivalent to:

 IF NOT (#ARRAY1(1)= #ARRAY2(1) AND #ARRAY1(2) = #ARRAY2(2))

This in turn is equivalent to:

 IF (#ARRAY1(1) NOT EQUAL #ARRAY2(1)) OR (#ARRAY1(2) NOT EQUAL #ARRAY2(2))

Condition B is therefore true if either the first occurrence of #ARRAY1 does not equal the first occurrence of
#ARRAY2 or the second occurrence of #ARRAY1 does not equal the second occurrence of #ARRAY2.

Arithmetic Operations with Arrays

In arithmetic operations (in COMPUTE, ADD or MULTIPLY statements), array ranges may be used in the
following ways:

range + range = range.
The range dimensions must be equal.
The addition is performed element by element.
range * range = range.
The range dimensions must be equal.
The multiplication is performed element by element.
scalar + range = range.
The range dimensions must be equal.
The scalar is added to each element of the range.
range * scalar = range.
The range dimensions must be equal.
Each element of the range is multiplied by the scalar.
range + scalar = scalar.
Each element of the range is added to the scalar and the result is assigned to the scalar.
scalar * range = scalar2.
The scalar is multiplied by each element of the array and the result is assigned to scalar2.

39Copyright Software AG 2002

Processing of ArraysGeneral Information

Renumbering of Source-Code Line Number References
Numeric four-digit source-code line numbers that reference a statement (see Statement Reference Notation - r) are
also renumbered if the Natural source program is renumbered. For the user’s convenience and to aid in readability
and debugging, all source code line number references that occur in a statement, an alphanumeric constant or a
comment are renumbered. The position of the source code line number reference in the statement or alphanumeric
constant (start, middle, end) does not matter.

The following patterns are recognized as being a valid source code line number reference and are renumbered (nnnn
is a four-digit number):

Pattern Sample Statement

(nnnn) ESCAPE BOTTOM (0150)

(nnnn / DISPLAY ADDRESS-LINE(0010/1:5)

(nnnn, DISPLAY NAME(0010,A10/1:5)

If the left parenthesis or the four-digit number nnnn is followed by a blank, or the four-digit number nnnn is followed
by a period, the pattern is not considered to be a valid source code line number reference.

To avoid that a four-digit number that is contained in an alphanumeric constant is unintentionally renumbered, the
constant should be split up and the different parts should be concatenated to form a single value by use of a hyphen.

Example:
Z := ’XXXX (1234,00) YYYY’ should be replaced by
Z := ’XXXX (1234’ - ’,00) YYYY’

Copyright Software AG 200240

General InformationRenumbering of Source-Code Line Number References

	General Information
	User-Defined Variables
	Naming Conventions
	Definition of Variables
	Statement Reference Notation - r
	Default Referencing of Database Fields
	Referencing with Statement Labels
	Referencing with Source-Code Line Numbers

	Definition of Format and Length
	Special Formats
	Format C - Attribute Control
	Formats D - Date, and T - Time
	Format L - Logical
	Format "Handle"

	Index Notation
	Using a Slash before an Array Occurrence

	Referencing a Database Array
	Referencing Multiple-Value Fields and Periodic-Group Fields
	Referencing Arrays defined with Constants
	Referencing Arrays defined with Variables
	Referencing Multiple-Defined Arrays

	Referencing the Internal Count for a Database Array
	C* for Multiple-Value Fields Within Periodic Groups

	Qualifying Data Structures

	Constants
	Numeric Constants
	Validation of Numeric Constants

	Alphanumeric Constants
	Apostrophes Within Alphanumeric Constants
	Concatenation of Alphanumeric Constants

	Date and Time Constants
	Extended Time Constants

	Hexadecimal Constants
	Logical Constants
	Floating Point Constants
	Attribute Constants
	Handle Constants

	Report Specification - rep
	Text Notation
	User Comments
	End of a Statement
	Logical Condition Criteria
	Relational Expression
	Arithmetic Expressions in Logical Conditions
	Handles in Logical Conditions
	SUBSTRING Option in Relational Expression

	Extended Relational Expression
	MASK Option
	Constant Mask
	Variable Mask
	Characters in a Mask
	Mask Length
	Checking Dates
	Checking Against the Content of Constants or Variables
	Range Checks
	Checking Packed or Unpacked Numeric Data

	SCAN Option
	BREAK Within Logical Condition Criteria
	IS Option - Checking Format and Length of Value
	Evaluation of a Logical Variable
	Modified Control Variables
	SPECIFIED Option
	Fields Used Within Logical Condition Criteria
	Logical Operators in Complex Logical Expressions

	Rules for Arithmetic Assignment
	Field Initialization
	Data Transfer
	Data Conversion

	Field Truncation and Field Rounding
	Result Format and Length in Arithmetic Operations
	Arithmetic Operations with Floating-Point Numbers
	Some General Considerations
	The Precision of Floating-Point Numbers
	Conversion to Floating-Point Representation
	Platform-Dependent Differences

	Arithmetic Operations with Date and Time
	Performance Considerations for Mixed Format Expressions
	Precision of Results for Arithmetic Operations
	Digits after Decimal Point for Division Results

	Error Conditions in Arithmetic Operations
	Processing of Arrays
	Assignment Operations with Arrays
	Comparison Operations with Arrays
	Arithmetic Operations with Arrays

	Renumbering of Source-Code Line Number References

